Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Article in English | MEDLINE | ID: covidwho-1550276

ABSTRACT

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Exoribonucleases/metabolism , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , A549 Cells , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2/enzymology , Virus Replication/drug effects
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: covidwho-1172591

ABSTRACT

In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.


Subject(s)
COVID-19/metabolism , Cell Cycle Proteins/metabolism , Cullin Proteins/metabolism , Multiprotein Complexes/metabolism , Open Reading Frames , SARS-CoV-2/metabolism , Viral Proteins/metabolism , COVID-19/genetics , Cell Cycle Proteins/genetics , Cullin Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL